\(\int \frac {a B+b B \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))} \, dx\) [388]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 36, antiderivative size = 44 \[ \int \frac {a B+b B \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))} \, dx=\frac {2 B \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 B \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)} \]

[Out]

2/3*B*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/3*B*sin(d*x+c)
/d/cos(d*x+c)^(3/2)

Rubi [A] (verified)

Time = 0.03 (sec) , antiderivative size = 44, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.083, Rules used = {21, 2716, 2720} \[ \int \frac {a B+b B \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))} \, dx=\frac {2 B \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 B \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)} \]

[In]

Int[(a*B + b*B*Cos[c + d*x])/(Cos[c + d*x]^(5/2)*(a + b*Cos[c + d*x])),x]

[Out]

(2*B*EllipticF[(c + d*x)/2, 2])/(3*d) + (2*B*Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/2))

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 2716

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1
))), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rubi steps \begin{align*} \text {integral}& = B \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x)} \, dx \\ & = \frac {2 B \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {1}{3} B \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx \\ & = \frac {2 B \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 B \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.04 (sec) , antiderivative size = 37, normalized size of antiderivative = 0.84 \[ \int \frac {a B+b B \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))} \, dx=\frac {2 B \left (\operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+\frac {\sin (c+d x)}{\cos ^{\frac {3}{2}}(c+d x)}\right )}{3 d} \]

[In]

Integrate[(a*B + b*B*Cos[c + d*x])/(Cos[c + d*x]^(5/2)*(a + b*Cos[c + d*x])),x]

[Out]

(2*B*(EllipticF[(c + d*x)/2, 2] + Sin[c + d*x]/Cos[c + d*x]^(3/2)))/(3*d)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(213\) vs. \(2(64)=128\).

Time = 2.04 (sec) , antiderivative size = 214, normalized size of antiderivative = 4.86

method result size
default \(-\frac {2 \left (-2 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right ) B \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}}{3 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right )}^{\frac {3}{2}} \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) d}\) \(214\)

[In]

int((B*a+b*B*cos(d*x+c))/cos(d*x+c)^(5/2)/(a+cos(d*x+c)*b),x,method=_RETURNVERBOSE)

[Out]

-2/3*(-2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*s
in(1/2*d*x+1/2*c)^2-2*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*
c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)))*B*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)
/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*cos(1/2*d*x+1/2*c)^2-1)^(3/2)/sin(1/2*d*x+1/2*c)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.09 (sec) , antiderivative size = 95, normalized size of antiderivative = 2.16 \[ \int \frac {a B+b B \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))} \, dx=\frac {-i \, \sqrt {2} B \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + i \, \sqrt {2} B \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 2 \, B \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{3 \, d \cos \left (d x + c\right )^{2}} \]

[In]

integrate((a*B+b*B*cos(d*x+c))/cos(d*x+c)^(5/2)/(a+b*cos(d*x+c)),x, algorithm="fricas")

[Out]

1/3*(-I*sqrt(2)*B*cos(d*x + c)^2*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + I*sqrt(2)*B*cos(d
*x + c)^2*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 2*B*sqrt(cos(d*x + c))*sin(d*x + c))/(d*
cos(d*x + c)^2)

Sympy [F(-1)]

Timed out. \[ \int \frac {a B+b B \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))} \, dx=\text {Timed out} \]

[In]

integrate((a*B+b*B*cos(d*x+c))/cos(d*x+c)**(5/2)/(a+b*cos(d*x+c)),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {a B+b B \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))} \, dx=\int { \frac {B b \cos \left (d x + c\right ) + B a}{{\left (b \cos \left (d x + c\right ) + a\right )} \cos \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

[In]

integrate((a*B+b*B*cos(d*x+c))/cos(d*x+c)^(5/2)/(a+b*cos(d*x+c)),x, algorithm="maxima")

[Out]

integrate((B*b*cos(d*x + c) + B*a)/((b*cos(d*x + c) + a)*cos(d*x + c)^(5/2)), x)

Giac [F]

\[ \int \frac {a B+b B \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))} \, dx=\int { \frac {B b \cos \left (d x + c\right ) + B a}{{\left (b \cos \left (d x + c\right ) + a\right )} \cos \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

[In]

integrate((a*B+b*B*cos(d*x+c))/cos(d*x+c)^(5/2)/(a+b*cos(d*x+c)),x, algorithm="giac")

[Out]

integrate((B*b*cos(d*x + c) + B*a)/((b*cos(d*x + c) + a)*cos(d*x + c)^(5/2)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {a B+b B \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))} \, dx=\int \frac {B\,a+B\,b\,\cos \left (c+d\,x\right )}{{\cos \left (c+d\,x\right )}^{5/2}\,\left (a+b\,\cos \left (c+d\,x\right )\right )} \,d x \]

[In]

int((B*a + B*b*cos(c + d*x))/(cos(c + d*x)^(5/2)*(a + b*cos(c + d*x))),x)

[Out]

int((B*a + B*b*cos(c + d*x))/(cos(c + d*x)^(5/2)*(a + b*cos(c + d*x))), x)